Component-Oriented Programming

Reduce
Application
Maintenance
- Costs

Discover how component-oriented
programming and .NET’s features can help
lower development and maintenance costs
and speed time-to-market.

by Juval Lowy

ver the last decade, component-oriented programming

has established itself as the predominant software de-
velopment methodology as the industry has moved away from
giant, monolithic, and hard-to-maintain code bases. Practition-
ers discovered that by breaking a system down into binary
components, you can gain reusability, extensibility, and main-
tainability. Component-oriented programming can bring about
major benefits such as faster time-to-market, robust applica-
tions, and lower development and long-term maintenance costs.

It’s no coincidence that component-oriented programming has caught on in a big way. In
thisarticle I'll present the core principles and benefits of component-oriented programming.

i For This Solution N X . : :
- I'll also contrast it with object-oriented programming, although the two methodologies do

=0 ~* A basic understanding of have some things in common.
¥ o component- and object- “Component” is probably one of the most overloaded and confusing terms in modern
_. oriented programming software engineering, and the .NET documentation isn’t without its fair share of inconsis-

tencies. The source of the confusion is where to draw the line between a class implementing

@ Online some logic, its containing physical entity (typically a DLL), and its containing logical
To read this article online at deployment, security, and versioning unit (the assembly). For our purposes, a component
www.thedotnetmag.com isa .NET class that is responsible for exposing some business logic to clients. A client is any
use this Locator+ code: party that makes use of the component, typically other classes. An object is an instance of
NMO0205JL_T a component, similar to the classic object-oriented definition of an object as an instance of

a class.

34 www.thedotnetmag.com « May 2002 .netmagazine

So, if every .NET class is a component,
and if both classes and components share
so many qualities, you might be wonder-
ing what the difference between traditional
object-oriented programming and compo-
nent-oriented programming is. The funda-
mental difference lies in the way the two
methodologies view the final application.

The Component
vs. Object Face off
In the traditional object-oriented world,
even though the developer or the architect
might have factored the business logic into
many fine-grained classes, once these classes
are compiled the result is one monolithic
chunk of binary code. All the classes share
the same physical deployment unit (typi-
cally an EXE), the same process, the same
address space, the same security privileges,
and so on. If multiple developers work on
the same code base, they have to share
source files. Insuch an application, a change
made to one class triggers a massive re-
linking of the entire application, and retest-
ing and redeployment of all other classes.
On the other hand, a component-
oriented application is comprised of a col-
lection of interacting binary modules—the
components (see Figure 1). The applica-
tion implements and executes its required
business logic by gluing together the func-
tionality offered by the individual compo-
nents. Component-enabling technologies
suchas COM, CORBA, and .NET provide
the “plumbing™ infrastructure to connect
binary components together in a seamless
manner, and the main distinction between
these technologies is the ease with which
you can connect components together,
The motivation for breaking down a
monolithic application to multiple binary
components is analogous in the object-
oriented world to the motivation for put-
ting different class’ code in different files.
By allocating different classes to different
files, you promote looser coupling between
the classes and between the developers
responsible for these classes, A change
made to one class may trigger only
recompilation of that class’ file (although
the entire application will have to go
through re-linking). But there are more
benefits to component-oriented program-
ming than easier project management.

.netmagazine May 2002 « www.thedotnetmag.com

Because the application is a collection
of binary building blocks, you can start
treating components as Lego blocks—plug-
ging and unplugging components at will. If
you need to modify any one of these com-
ponents, the changes are contained in that
component only. No client is affected or
requires recompilation and redeployment.
You can even update components while
the application is running (as long as they
aren’t used by clients).

In addition, improvements, enhance-
ments, and defect fixes made to one com-
ponent are immediately available to all
applications using that component, on the
same machine or across the network. It’s
also easier to extend a component-oriented
application. When you need to implement
new requirements, you can provide these
in new components, without having to
touch existing components that aren’t af-
fected by the new requirements.

When you combine these factors, com-
ponent-oriented programming can reduce
the costs involved with long-term mainte-
nance, an issue essential to almost any
company, which explains the wide adop-
tion of component technologies. Compo-
nent-oriented applications also usually
enjoy a faster time to market, because
developers can select from a wide range of
available components (either in-house or
from component vendors), and avoid rein-
venting the wheel. Consider, for example,
the rapid development mode of many Vi-
sual Basic 6.0 applications, which rely on
libraries of ActiveX controls for almost
every aspect of the application.

Avoid Complex Class Hierarchies
Object-oriented and component-oriented
methods also differ in the emphasis each
one places on inheritance and reuse
schemas. In object-oriented analysis and
design, software engineers often model
their application in terms of complex class
hierarchies, trying to approximate in their
software class hierarchy modeling the busi-
ness problem being solved. Reusing exist-
ing code is promoted by inheriting from an
existing base class and specializing its be-
havior. Unfortunately, inheritance makes
a poor reuse mechanism. When developers
derive a subclass from a base class, they
must be intimately aware of the implemen-

Component-Oriented Programming

tation details of the base class. For ex-
ample, if you change the value of a member
variable it could affect the code in the base
class. Or overriding a virtual method in the
base class and providing a different behav-
ior could break the code of clients that
expect the base behavior. This form of
white box reuse simply doesn’t allow for
economy of scale in large organizations’
reuse programs or easy adoption of third-
party frameworks.

Component-oriented programming
promotes black box reuse instead. Devel-
opers can use an existing component with-
out regard to its internals, as long as the
component complies with a predefined set
of operations or interfaces. Instead of in-
vesting in designing complex class hierar-
chies, component-oriented developers
spend most of their time factoring out the
interfaces used as contracts between com-
ponents and clients.

.NET allows components to use inher-
itance of implementation (deriving from a
class with functionality and members), and
vou certainly could develop complex class
hierarchies. However, you should keep
your class hierarchies as simple and flat as
possible, and focus instead on factoring
interfaces. Doing so promotes black box
reuse of your component instead of white
box reuse through inheritance,

Finally, object-oriented programming
provides developers next to nothing when
it comes to real-time design patterns such
as multithreading and concurrency man-

Figure 1. Get the Component-Oriented
View. Instead of a traditional monolithic binary
entity, a component-oriented application is
comprised of multiple interchangeable binary
components.

35

Component-Oriented Programming

agement, security, distributed application,
not to mention application deployment
and version control. Object-oriented de-
velopers are more or less left to their own
devices when it comes to these patterns. As
a component technology, .NET supports
the developer by providing a superb com-
ponent development infrastructure, allow-
ing the developers to focus on their busi-
ness problem at hand, instead of run-time
issues. Ultimately, these concepts compli-
ment each other as well, because .NET
provides an object-oriented programming
paradigm in the context of components.

Take a Component-

Oriented Approach

What constitutes component-oriented pro-
gramming is an ever-evolying set of prin-
ciples. Often it’s hard to tell which aspect
is a true principle and which is only a
feature of the component technology used.
As the supporting technologies become
more powerful, software engineering will

Bridging the Skill Gap

undoubtedly extend its perception of com-
ponent-oriented programming and em-
brace new ideas. Next, I’ll outline the core
set of principles of component-oriented
technologies as they stand today.

The fundamental principle of compo-
nent-oriented programming is that the basic
unit of use in an application is a binary-
compatible interface. The interface pro-
vides abstract service definition between
the client and the object. This is in contrast
with the object-oriented view that places
the object implementing the interface at
the center. An interface is a logical group-
ing of method definitions that act as the
contract between the client and the service
provider. Each provider is free to provide
its own interpretation of the interface, its
own implementation. The interface is
implemented on a black box binary com-
ponent that completely encapsulates its
interior. This principle is known as separa-
tion of interface from implementation.

Touseacomponent, all the client needs

. ne of the challenges facing the software industry today is the skill gap
" between what developers should know and be proficient at to meet quality,

36

schedule, and budget goals, and what developers are actually capable of doing.
Even developers with a formal computer science background often lack effective
component-oriented design skills, which are primarily obtained through experi-
ence. Today's aggressive deadlines and a shortage of developers preclude
attending dedicated training sessions or providing efficient, on-the-job training.
Nowhere is the gap more visible than in adhering to the principles of component-
oriented development. Object-oriented concepts are easier to understand and
apply than component-oriented principles, so developers are more likely to
implement them. This is partly because object-oriented concepts have been
around much longer, so a larger portion of developers are familiar with them, and
partly because of the added degree of complexity involved with component
development compared with monolithic applications.

One of Microsoft's prime goals with the NET platform is to simplify developing
and consuming binary components, and to make component-oriented program-
ming accessible to as many developers as possible. As a result, NET doesn't
enforce some of the core principles of component-oriented programming, such
as separation of interface from implementation, and, unlike COM, .NET allows
binary inheritance of implementation. Instead, .NET merely enforces a few of the
concepts and enables the rest.

Doing so caters to both ends ofthe skill spectrum. Developers that understand
only object-oriented concepts will develop .NET objects, but because every NET
classis consumed as a binary component by its clients, these developers will gain
many of the benefits of component-oriented programming. Developers who
understand and master how to apply these principles will be able to fully maximize
the benefit of NET as a powerful component development technology.

to know is the interface definition (the
service contract), and have a binary com-
ponent thatimplements thatinterface. This
extra level of indirection between the client
and the object enables interchangeability
between different implementations of the
same interface, without affecting the client
code. The client doesn’t need to recompile
its code to use a new version and some-
times doesn’t even need to be shut down to
do the upgrade. Provided the interface is
immutable, the objects implementing the
interface are free to evolve and introduce
new versions. To implement the interface
functionality inside a component, devel-
opers still use traditional abject-oriented
methodologies, but usually the resulting
class hierarchies are simple and easy to
manage. Unlike COM, .NET doesn’t en-
force separation of interface from imple-
mentation. Developers can work with ei-
ther interfaces or direct public methods,
similar to Java. (For the rationale behind
this . NET behavior, see the sidebar, “Bridg-
ing the Skill Gap.”) So, although from the
puritan perspective COM is better, from
the practical perspective .NET is better.
COM is unnecessarily ugly because it was
built on top of Windows, an operating
system that is component-agnostic, and
when implementing COM you use lan-
guages like C++, which are object, not
component oriented. .NET on the other
hand, is built on top of a fresh, component-
oriented runtime, and, therefore, has an
easier time providing these core concepts,
even though it doesn’t enforce them.
Another core principle of component-
oriented programming is binary compat-
ibility between client and server. Tradi- -
tional object-oriented programming re-
quires that all the parties involved—clients
and servers—be part of one monolithic
application. During compilation, the com-
piler bakes the address of the server entry
points into the client code. Component-
oriented programming revolves around
packaging code into components, also
know as binary building blocks. Changes
to the component code are contained in the
binary unit hosting it, and you don’t need
to recompile and redeploy the clients. But
the ability to replace and plug new binary
versions of the server implies binary com-
patibility between the client and the server.
This means the client’s code must interact

www.thedotnetmag.com = May 2002 .netmagazine

at run time with exactly what it expects as
far as the binary layout in memory of the
component entry points. This binary com-
patibility is the basis for the contract be-
tween the component and the client. As
long as the new version of the component
abides with this contract, the client isn’t
affected.

Microsoft’s first attempt at component
technology using DLLs provided binary
compatibility utilizing enumerated entry
points (called ordinal numbers) to the DLL.
However, this approach was fragile and
error prone. COM was the first technology
to truly provide binary compatibility using
virtual tables (interface definitions). NET
takes COM’s binary compatibility to a
whole new level by using metadata and
Just-In-Time compilation, which avoids
baking the actual binary layout into the
client code until runtime. As a result,
changes such as adding new methods don’t
break the client’s code.

Utilize Language Independence

Unlike traditional object-oriented program-
ming, in component-oriented programming
the server is developed independently of
the client. Because the client interacts with
the server only at runtime, binary compat-
ibility is the only thing that binds the two
together. This means the programming

Component-Oriented Programming

Machine A Machine B
Process 1 Process 1
) <— Client »] >
Object ’ G ~ Object ;
-\
Machine C
Process 2
-} ¥ Process 1
Object w Internet \ o
TR Objeci
4

Figure 2. Be Transparent. Location transparency enables the client code to be oblivious of
the actual object location. The object can be in the same process, in different processes on
the same machine, on different machines in the same local network, or even across the Internet.

execute, regardless of language. So, by its
very nature, .NET supports language inde-
pendence. When you contrast .NET with
Java, it significantly lags behind in lan-
guage independence, because Java clients
can only use Java components.

A component-based application con-
tains multiple binary components. These
components can be all in the same process,
in different processes on the same ma-
chine, or on different machines in the same
local network. Recently, with the advent

Component-oriented programming must-also allow
clients and components to evolve separately.

language used to implement the client or
the server is irrelevant to their ability to
interact. Language independence means
exactly that: When developing and de-
ploying components, the programming
language used shouldn’t be taken into ac-
count. Language independence promotes
component interchangeability, adoption,
and reuse. By not caring which language
was used to develop the component, the
client has a wider, richer offering from
multiple vendors to choose from.

COM was the first technology to sup-
port true language independence, with the
canonical example of Visual Basic clients
using C++ COM components to do all the
things VB can’t do. .NET is based on the
common language runtime (CLR), a run-
time environment where all components

snetmagazine May 2002 * www.thedotnetmag.com

of Web services, you can also distribute
components across the Internet.

The underlying component technology
is required to provide the client with loca-
tion transparency, allowing the client code
to be independent of the actual location of
the object it uses. Location transparency
means there’s nothing in the client’s code
pertaining to where the object executes.
The same client code handles all cases of
object location, although the client should
be able to insist on a specific location as
well (see Figure 2).

Location transparencyis crucial to com-
ponent-oriented programming for a num-
ber of reasons. First, it enables developers
to develop the client and components lo-
cally (providing easier and more produc-
tive debugging), yet deploy the same code

base in distributed scenarios. Second, us-
ing the same process for all components—
or multiple processes or even multiple
machines—has significant tradeoffs on
performance and ease of management vs,
scalability, availability, robustness,
throughput, and security. Different cus-
tomers will have different priorities and
preferences for these tradeoffs, yet the same
set of components from a particular ven-
dor or team should be able to handle all
customers. Third, component location
tends to change as the application’s re-
quirements evolve over time. To minimize
the cost of long-term maintenance and
extensibility, you should avoid having the
client code make any assumptions regard-
ing the location of objects it uses, and to
avoid making explicit calls across pro-
cesses or across machines.

DCOM offers elegant location trans-
parency to COM components, and .NET
also offers location transparency using the
infrastructure of .NET Remoting. .NET
also has native XML Web services support
that completely takes care of the details
(both on the server and client sides) of
invoking a call over the Internet. Java uses
Remote Method Invocation (RMI) for re-
mote calls, and, as such, doesn’t provide
true location transparency.

Provide Concurrency
Management

A component developer can’t possibly
know in advance all the possible ways the

37

Component-Oriented Programming

component will be used, particularly if it'll
be accessed by multiple threads concur-
rently. The developer can’tassume it won’t
be, and therefore must provide some syn-
chronization mechanism inside the com-
ponent. However, this approach has two
flaws: First, it might lead to deadlocks,
because if every component in the applica-
tion has its own synchronization lock, a
deadlock could occur if two components
on different threads try to access each
other. Second, it's an inefficient use of

nology should enforce version control, al-
lowing for separate evolution paths and
side-by-side deployment of different ver-
sions of the same component. The compo-
nent technology should also detect incom-
patibility as soon as possible and alert the
client.

NET zealously enforces version con-
trol with two deployment modes: private
and shared. In private mode, each applica-
tion administrator is responsible for man-
aging the version of its own private set of

.NET is the first component-oriented development
platform that provide native component-oriented
aspects, all the way from the runtime to the

development tools.

system resources when all the components
in the application are always accessed by
the same thread.

To resolve this issue, the underlying
component technology must provide some
comcurrency management service: a way
for components to participate in some
application-wide synchronization mecha-
nism, even though the components were
developed separately. In addition, the un-
derlying component technology should
enable components and clients to provide
their own synchronization solutions for
fine-grained control and optimized per-
formance. COM provides concurrency
management through an apartment, a cum-
bersome mechanism that relies on thread
affinity. .NET concurrency management
support is elegant and granular. Develop-
ers can either provide manual synchroni-
zation using locks, or they can ask .NET to
automatically synchronize access to their
components using attributes. NET s auto-
matic synchronization mechanism allows
multiple components, from different ven-
dors, to share a lock.

Component-oriented programming
must also allow clients and components to
evolve separately. Component developers
should be able to deploy new versions (or
just fixes) of existing components, without
affecting existing client applications. Cli-
ent developers should be able to deploy
new versions of the client application and
expect it to work with older component
versions. The underlying component tech-

38

eERRR

components. Changes made to one appli-
cation and its private set don’t affect other
applications. Shared mode allows all ap-
plications to share a global components
repository. The global repository can con-
tain multiple versions of the same compo-
nent. NET automatically loads a compat-
ible component version for the client, ei-
ther from its private set or from the global,
shared location.

Ensure Security

In component-oriented programming,
components are developed separately from
the client applications using them. Com-
ponent developers have no way of know-
ing anything about the intent of the client
application and the end user. A benign
component could be used maliciously to
cause damage such as data corruption or
perform illegal operations, for example,
transferring funds without proper authori-
zation and authentication. Similarly, a cli-
ent application has no way of knowing
whether it’s interacting with a malicious
component that will abuse the credentials
of the calling client. In addition, even if
both the client and the component have no
ill intent, the end user can still try to hack
into the system or do some other damage
(even by mistake).

The underlying component technology
must provide the security infrastructure to
deal with these scenarios, without cou-
pling components and client applications
to each other by the nature of the security

mechanism. In addition, security require-
ments, policies and events (such as new
users) are one of the most volatile, ever
changing aspects of the application life
cycle, not to mention the fact that security
policies vary between applications and
customers. A productive component tech-
nology should allow for the components to
have as few security policies and incorpo-
rate security awareness into the code itself,
and allow for system administrators to
customize and manage the application se-
curity policy without escalating code
changes back to the developer. .NET offers
rich security infrastructure to address these
concerns. It verifies at runtime that the
calling client (in fact, the entire clients
calling chain) has the right permissions to
access the component and that the compo-
nent has permissions to carry out what the
component is asked to do. .NET allows
system administrators to configure what
components are allowed to do, and what
evidence these components should provide
to verify their origin and authenticity.
NET is the first component-oriented
development platform that provide native
component-oriented aspects, all the way
from the runtime to the development tools.
To make the most of .NET, and come to
terms with it, you need to understand the
rationale behind it. Adhering to the ab-
stract principles of component-oriented
programming, that were the driving forces
behind .NET, will provide robust and exten-
sible applications for years to come. €D

About the Author

Juval Lowy is a software architect and
the principal of IDesign, a consulting and
training company focused on .NET de-
sign and migration. Juval is the author of
COM and .NET Component Services
(2001, O'Reilly & Associates). This article
is based on excerpts from his upcoming
book on programming .NET components,
also from O'Reilly & Associates. Juval is
a frequent speaker at international soft-
ware development conferences, and he
chairs the program committee of the NET
California Bay Area User Group. Contact
him at www.idesign.net.

www.thedotnetmag.com - May 2002 .netmagazine

	.net Magazine May 02 Vol 2 pg 1.pdf (p.1)
	.net Magazine May 02 Vol 2 pg 2.pdf (p.2)
	.net Magazine May 02 Vol 2 pg 3.pdf (p.3)
	.net Magazine May 02 Vol 2 pg 4.pdf (p.4)
	.net Magazine May 02 Vol 2 pg 5.pdf (p.5)

